2017滑鐵盧數(shù)學(xué)競(jìng)賽試題及答案是小編為大家分享的加拿大滑鐵盧國(guó)際數(shù)學(xué)競(jìng)賽的全套答案,所有的在高中的同學(xué)都可以參加,只要是英語(yǔ)好數(shù)學(xué)好就沒(méi)問(wèn)題,目前在國(guó)內(nèi)都非;,很多厲害的數(shù)學(xué)高手都去過(guò),想考好成績(jī)就趕緊下載吧。
2017滑鐵盧數(shù)學(xué)競(jìng)賽試題及答案預(yù)覽:
problem 6.
A prime number must end with digit 1, 3, 7, or 9. The desired integer must assume the value 1, 3, 7, 9 in all places excluding the initial one. We can list all two-digit primes with digits from {1, 3, 7, 9}. i,e, A= {11,13,17,19,31,37,71,73,79,97}
Now we try to obtain an integer satisfying the properties of maximum length. Count the number of primes from set A with the same ending and initials.
For example, four of them start with 1, while three of them end with one.
min{3,4}=3 , hence the integer we construct must contain at most three one's.
A possible integer could be 67973713119.
如何報(bào)名2017年滑鐵盧大學(xué)舉辦的數(shù)學(xué)競(jìng)賽?
去大使館辦理證件!然后向所在市報(bào)名!然后參加省選拔賽 然后全國(guó)選拔賽!最后才去滑鐵盧!
預(yù)報(bào)名時(shí)間:2017年1月-3月初
預(yù)報(bào)名對(duì)象:初一至高三學(xué)生【Gauss(初一初二)、Fryer(初三)、Euclid(高中)】
滑鐵盧數(shù)學(xué)競(jìng)賽hypatia難嗎?
其實(shí)不難,中國(guó)的學(xué)霸相當(dāng)厲害的。
- PC官方版
- 安卓官方手機(jī)版
- IOS官方手機(jī)版