又一個學期要走到盡頭了,大家又要迎來期末考試,為大家?guī)淼氖?strong>數學八年級下冊復習ppt下載,內容豐富,講解詳細,能夠幫助您輕松有效的復習,歡迎下載。
數學八年級下冊復習ppt素材
勾股定理
勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現(xiàn)約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。
函數簡介
函數(function)的定義通常分為傳統(tǒng)定義和近代定義,函數的兩個定義本質是相同的,只是敘述概念的出發(fā)點不同,傳統(tǒng)定義是從運動變化的觀點出發(fā),而近代定義是從集合、映射的觀點出發(fā)。函數的近代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示,函數概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函數關系的本質特征。
函數,最早由中國清朝數學家李善蘭翻譯,出于其著作《代數學》。之所以這么翻譯,他給出的原因是“凡此變數中函彼變數者,則此為彼之函數”,也即函數指一個量隨著另一個量的變化而變化,或者說一個量中包含另一個量。
- PC官方版
- 安卓官方手機版
- IOS官方手機版